Урок: разрешение изображения. Растровая графика Разрешение печатного изображения и понятие линиатуры

Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать:

  • - разрешение оригинала;
  • - разрешение экранного изображения;
  • - разрешение печатного изображения.

Разрешение оригинала

Разрешение оригинала измеряется в точках на дюйм (dots per inch - dpi) и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требование к качеству, тем выше должно быть разрешение оригинала.

Разрешение экранного изображения

Для экранных копий изображения элементарную точку растра принято называть пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешение оригинала и масштаб отображения.

Мониторы для обработки изображений с диагональю 20-21 дюйм (профессионального класса), как правило, обеспечивают стандартные экранные разрешения 640х480, 800х600, 1024х768, 1280х1024, 1600х1200, 1600х1280, 1920х1200, 1920х1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22-0,25 мм.

Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150-200 dpi, для вывода на фотоэкспонирующем устройстве 200-300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования.

Разрешение печатного изображения и понятие линиатуры

Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм (lines per inch - Ipi) и называется линиатурой.

Разрешающая способность растра

Поскольку пиксели не имеют своих собственных размеров, они приобретают их только при выводе на некоторые виды устройств, такие как монитор или принтер.

Для того чтобы помнить действительные размеры растрового рисунка, файлы растровой графики иногда хранят разрешающую способность растра. Разрешающая способность - это просто число элементов заданной области. Когда мы говорим о растровой графике, то минимальным элементом обычно является пиксель, а заданной областью дюйм. Поэтому разрешающую способность файлов растровой графики принято задавать в пикселях на дюйм. Файлы растровой графики занимают большое количество памяти компьютера. Некоторые картинки занимают большой объём памяти из-за большого количества пикселей, любой из которых занимает некоторую часть памяти. Наибольшее влияние на количество памяти занимаемой растровым изображением оказывают три фактора: размер изображения; битовая глубина цвета; формат файла, используемого для хранения изображения.

Существует прямая зависимость размера файла растрового изображения. Чем больше в изображении пикселей, тем больше размер файла. Разрешающая способность изображения на величину файла никак не влияет. Разрешающая способность оказывает эффект на размер файла только при сканировании или редактировании изображений. Связь между битовой глубиной и размером файла непосредственная. Чем больше битов используется в пикселе, тем больше будет файл. Размер файла растровой графики сильно зависит от формата выбранного для хранения изображения. При прочих равных условиях, таких как размеры изображения и битовая глубина существенное значение имеет схема сжатия изображения. Например, BMP файл имеет, как правило, большие размеры, по сравнению с файлами PCX и GIF, которые в свою очередь больше JPEG файла.

Многие файлы изображений обладают собственными схемами сжатия, также могут содержать дополнительные данные краткого описания изображения для предварительного просмотра.

Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины.

При этом следует различать: разрешение оригинала, разрешение экранного изображения, разрешение печатного изображения.

Разрешение оригинала измеряется в точках на дюйм (dots per inch – dpi) и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требование к качеству, тем выше должно быть разрешение оригинала.

Растровым называется изображение состоящее из массива точек - пикселей. Пиксел - это элементарный, то есть наименьший и уже не делимый элемент двухмерного цифрового изображения прямоугольной или круглой формы определенного цвета. В то же время, пиксел - это и физический элемент матрицы устройств вывода - дисплеев. Например, на мониторе плазменной панели пиксел может быть восьмиугольным.

Таким образом, с помощью таких цветных точек-пикселей можно создать картинку, практически, любой сложности. В растровом формате представлены изображения на большинстве устройств вывода графики: мониторах, сканерах, принтерах, сотовых телефонах, цифровых фотокамерах.

Размер растрового изображения - это ширина и высота рисунка в пикселах. Например, если мы правым кликом по картинке на этой странице откроем контекстное меню и пройдем в "Свойства изображения...":

то увидим его габариты в пикселах, где 200 - его ширина, а 150 - высота:

Количество пикселей на единицу длины - это и есть разрешение изображения. Чем выше разрешение, тем больше пикселей расположено в дюйме. Тем более мелкими они будут. И тем более четкими будут детали изображения, более точным будет отображение оригинала. Разрешение измеряется в dpi (dots per inch) - количестве точек на дюйм.

Для распечатанной фотографии обычного качества достаточно разрешения в 300 dpi. Исходя из этого легко посчитать размер цифрового изображения в пикселах для определенного формата фотобумаги. Например, чтобы вписать фотографию на формат А4 (210х297) мм или 8х11 дюймов, умножаем 8 на 300 и 11 на 300. И получаем 2400х3300px. Таким должен быть минимальный размер картинки для распечатки на А4. Если размеры будут меньше, то изображение будет нечетким, расплывчатым.

Перейдем, теперь, к разрешению монитора. Разрешение определяет четкость картинки и текста на экране. При высоком разрешении объекты становятся меньше, смотрятся четче и их на экране больше. При низком разрешении, наоборот, объекты выглядят крупнее и на экране их меньше.

Мониторы на основе электронно-лучевой трубки (ЭЛТ-мониторы), которые сегодня уже почти нигде не применяются могут эффективно работать в различных разрешениях. Жидкокристаллические дисплеи и мониторы десктопов и ноутбуков на их основе лучше всего использовать на собственном разрешении. Собственное - это разрешение для которого разработан монитор исходя из его размеров.

Мониторы по соотношению сторон бывают стандартными 4:3 или широкоформатными с 16:9, или 16:10. Это значит, что на четыре единицы ширины экрана приходится три единицы в высоту. Или 16 единиц по горизонтали при девяти по вертикали.

У ЖК-мониторов по сравнению с ЭЛТ есть ряд преимуществ. Это компактность и малый вес. Отсутствие мерцания связанное с частотой смены кадров. Отсутствие геометрических искажений изображения. Высокая четкость картинки - следствие большей разрешающей способности. ЖК-мониторы не излучают электромагнитных волн и поэтому безопаснее. Современные широкоформатные мониторы выпускаются даже со встроенной аудиосистемой.

Правым кликом в любом месте рабочего стола откроем контекстное меню и выберем строку "Разрешение экрана". Откроется окно "Настройки экрана". Здесь развернем шкалу "Разрешение":

1920х1080px и есть собственное разрешение данного 24-дюймового дисплея. 24 дюйма - это его диагональ. Чтобы узнать dpi, нужно 1920 пикселей поделить на ширину и 1080 пикселей на высоту экрана в дюймах. И получаем 92dpi. Для сравнения: у 15-дюймового ЭЛТ-монитора оптимальным считается разрешение 800х600px, что составляет 67dpi.

Отсюда - практические выводы. Когда мы подбираем красивые обои на рабочий стол, размер картинки в пикселах не должен быть меньше установленного разрешения монитора. Например, для представленного выше 24-дюймового монитора габариты рисунка должны превышать 1920px по горизонтали и 1080px по вертикали. Или быть точно такого же размера. Изображение меньшего размера будет выглядеть размытым и абсолютно неприемлимо.

Обои и различные изображения можно подобрать на специализированном поисковике картинок. Активная ссылка есть на странице поисковики интернета .

Недостатком простых растровых картинок является большой объем файла изображения. Поэтому растровые фотографии и рисунки сохраняются в сжатом виде в различных графических форматах. Выбор формата зависит от типа изображения и способа его использования. Оптимальным для размещения полноцветных фотографий в интернете является формат jpeg, например. Однако, jpeg плохо подходит для чертежей, символьных и текстовых структур. Такую графику лучше сохранять в форматах, которые сжимают без потерь, как png или gif.

Еще много можно интересного написать о графических форматах.

И, как самому легко сделать gif-анимацию –«гифку» читаем в статье

Для того чтобы установить единую меру дискретизации, было разработано понятие разрешения (resolution) , которое однозначно связывает размер элемента дискретизации со стандартными единицами измерения, принятыми в науке и технике.

Разрешение тесно связано с другим параметром изображения - размером. Растровая графика измеряет изображения в пикселях (иногда говорят в пикселах). Термин пиксел (pixel ) появился в результате слияния слов "picture" и "element". При этом устанавливается прямая связь размера и разрешения. Разрешение оригинала представляется в точках на дюйм (dots per inch) – dpi . Чем выше требования к качеству изображения, тем выше должно быть разрешение. Для печатных устройств важен другой параметр разрешения lpi (line per inch) – число линий на один дюйм, но об этом несколько позднее.

Разрешение включает в себя два компонента - пространственное разрешение и яркостное разрешение.

Пространственное разрешение (или просто разрешение) - характеризует количество пикселей в изображении. Чем больше пикселей содержит изображение, тем выше его качество (хотя существуют некоторые ограничения, связанные с размером изображения).

Яркостное разрешение (глубина цвета ) определяет число уровней яркости, которые может принимать каждый отдельный пиксель. Чем оно выше, тем больше оттенков цвета будет содержать изображение. Для черно-белых изображений поддерживается глубина цвета в 8 бит, т.е. 256 градаций яркости (последние версии растровых редакторов поддерживают 16 бит - 65536). Для цветных изображений используется кодировка цвета 24 (наиболее распространенная - 16,7 млн. оттенков), 32, 48 и 96 битами. Последний тип кодировки изображения с 32-битными каналами называются также изображениями с расширенным динамическим диапазоном (HDR-изображениями ). HDR-изображения открывают целый мир новых возможностей, так как позволяют охватить весь динамический диапазон видимого света. Поскольку в HDR-изображении пропорционально представлены и сохранены все значения светимости реального мира, настройка экспозиции HDR-изображения происходит точно так же, как настройка экспозиции при съемке кадра в реальном мире. Эта возможность позволяет создавать реалистичные размытия и другие эффекты освещения реального мира. В настоящее время HDR- изображения чаще всего используются при съемках кинофильмов, при создании специальных эффектов, в трехмерной графике и иногда в фотографиях высокого класса.

Но не все редакторы растровой графики способны работать с HDR-изображениями. Даже в Photoshop имеются многочисленные ограничения.

Таким образом, разрешение - это совокупность размера изображения и глубины цвета.

Разрешение представляет собой достаточно универсальное понятие, которое применяется в разных областях, имеющих дело с изображениями (например, в телевидении, полиграфии и компьютерной графике), оно, хотя и имеет разные названия и разные формы единиц измерения, сохраняет единый смысл: количество дискретных элементов, приходящихся на стандартную единицу длины (фактически - на единицу площади).

При этом стоит обратить особое внимание на качественное содержание этого понятия, а именно уяснить, что качество, которое обеспечивается разрешением, необходимо понимать в узком метрологическом смысле: правильное разрешение должно всего лишь создать условия для передачи минимальных элементов изображения. Отсюда возникает задача определения оптимального соотношения между размером минимального элемента оригинала и размером пиксела (критерий Котельникова - Найквиста). Неправильный выбор разрешения чреват многочисленными погрешностями, в частности пренебрежение критерием создает условия для появления муара.

Конечно, стоит задаться таким вопросом: обеспечиваются ли в рассмотренном примере одинаковые размеры исходного изображения и конечного изображения? Естественно, при обязательном условии - равенстве элементов дискретизации. Предлагается выполнить эскиз простой мозаики, из которой следует, что нужно взять 20 элементов, 4 из которых будут черными, а остальные 16 - белыми, а затем сложить из них изображение в форме квадрата. Совершенно очевидно, что эту задачу можно выполнить с помощью элементов различного размера и получить изображения разного размера, никак не исказив исходный эскиз.

Исходя из этой схемы, становится очевидным, что в битовой карте отсутствует указание на реальный размер элемента. В таком случае одна и та же битовая карта может быть визуализирована по-разному, если элементы, из которых строится оттиск, имеют различные размеры, рисунок 17.

В данном случае совершенно очевидно, что причиной неоднозначной визуализации является указание только количества элементов и отсутствие каких бы то ни было указаний на размер элементов. Но т.к. разговор идет о соответствии размеров дискретных элементов в битовой карте и в устройстве визуализации, следует "привязать" их к единой шкале.

Рисунок 17

Вот это соотношение и реализуется в известном понятии разрешение . В качестве элемента дисретизации как раз и был выбран пиксел.

Главным отличительным свойством пиксела является его однородность и неделимость.

Единица измерения разрешения ppi - это количество пикселов в каждом дюйме изображения (point per inch).

Таким образом, введение абсолютной единицы измерения призвано обеспечивать идентичность размеров оригинала и оттиска.

Для того чтобы разобраться в том, что такое правильное разрешение, стоит вместо идеального оригинала (черного квадрата), которым мы до сих пор оперировали, выбрать изображение немного сложнее – черный треугольник, рисунок 18.

Рисунок 18

Особенность этого изображения состоит в несовпадении сетки дискретизации и границы между белыми и черными областями. Если мы по-прежнему станем использовать разрешение, ранее выбранное нами, например 1 ppi, результат визуализации оцифрованного изображения приобретет следующий вид, рисунок 19.

Рисунок 19

Оказывается, что такое значение разрешения, которое было принято случайно, явно не обеспечивает правильного отображения. Получилось изображение, во-первых, имеющее "ступеньки", отсутствовавшие в исходном изображении, а во-вторых, оно мало похоже на исходный оригинал. Разумеется, надо искать пути для исправления такого положения.

Если требуется более точно передавать в цифровом дискретизированном изображении такие наклонные элементы, необходимо уменьшить размер элементов дискретизации (пикселов), а для этого, соответственно, придется увеличивать разрешение. Например, размер пикселов можно уменьшить вдвое и получить разрешение 2 ppi. Обратите внимание, что в этом случае в визуализированном изображении ступеньки станут в два раза меньше, рисунок 20.

Рисунок 20

Таким образом, увеличивая разрешение (и, соответственно, уменьшая фактический размер пикселов), мы, в конце концов, сможем достичь такого уровня, когда таких ступенек не будет вовсе. Вполне можно достигнуть уровня, при котором эти элементы станут неразличимыми для восприятия (как, например, на фотографии).

Действительно, при определенных значениях разрешения дискретная структура неразличима (или почти неразличима) глазом. На этом построены все устройства, работающие с изображением (кино, телевидение, фотография и полиграфия).

Но на самом деле, достаточно "вооружить" глаз каким-нибудь оптическим прибором, и можно заметить, что всюду присутствуют дискретные элементы, даже если мы рассматриваем фотографию и нам кажется, что изображение и тоновая шкала непрерывны.

Для сведения - дискретная структура фотоизображений задается уже в процессе создания пленки или фотобумаги (ни фотоаппараты, ни увеличители не влияют на это), она только слегка изменяется в процессе экспонирования и проявки. Состав, который наносится на пленку или на бумагу, содержит галогениды серебра в виде так называемых "зерен". Их размер, изменяемый в процессе обработки, как раз и определяет элементы изображения. Исходя из этого, пленки бывают крупнозернистыми или мелкозернистыми.

Особенностью дискретной структуры фотоизображений является то, что элементы дискретизации неоднородны. В процессе экспонирования и обработки отдельные зерна сливаются, создавая конгломераты различных размеров, в том числе даже видимые невооруженным глазом (особенно это заметно при очень сильном увеличении фрагмента фотографии).

Структура светочувствительного слоя пленки или фотобумаги предполагает, что дискретные элементы фотоизображений неоднородны, а это идеальная ситуация для адаптивного отображения тоновой картины. Дискретные элементы цифровых изображений, которые принудительно создаются, имеют принципиально (в настоящий исторический период) однородный характер.

Для того чтобы получить, в конце концов, адекватный оригиналу оттиск, пользователь должен определить соответствующее этому разрешение.

Рассмотрим разрешение не с точки зрения элемента дискретизации, например пиксела как такового (его объективного размера), а с точки зрения исходного изображения, у которого тоже могут быть некоторые минимальные элементы (линии чертежа). Эти минимальные элементы, разумеется, требуют сохранения в процессе репродуцирования и отображения в конечном цифровом документе. Успешное отображение таких минимальных элементов - одно из безусловных требований сканирования изображений.

Отсюда возникает задача сформулировать определенную зависимость между размером минимального элемента оригинала и разрешением (то есть фактическим размером пиксела), но прежде необходимо понять смысл качества цифровых изображений.

Основное правило оценки качества в метрологии - Измеряй микрометром. Отмечай мелом. Отрубай топором. Правило точности Рэя.

Если мы используем разрешение 1 ppi, как в первом случае, или, скажем, 400 ppi, то понятно, что этим фактически определяется размер пиксела, т. е. минимальной ячейки пиксельной сетки, которая накладывается на исходное изображение. В принципе, если создана битовая карта, то в соответствии с расположением элементов в этой битовой карте изображение можно построить с помощью элементов любого размера, т. е. нам и не нужно знать размер пикселов визуализации.

Это означает, что зачастую пользователь не в состоянии изменить условия вывода информации. В самом деле, работа с пиксельным изображением требует учета параметров на всех этапах: от оригинала до оттиска.

Знать размер минимальных элементов важно потому что, помимо выхода (этапа визуализации), существуют и проблемы входа (соответствия битовой карты цифрового изображения исходному оригиналу). Так, например, при фотосъемке точное знание светочувствительности необходимо для выбора оптимальных условий экспонирования в процессе съемки или печати.

При дискретизации штриховых изображений - аналогичный случай: в оригинале существуют линии, но коль скоро условия регистрации не соответствуют требуемым, то в этом случае они не могут быть зафиксированы. На таких условиях строятся многочисленные приемы художественной фотографии, а также компьютерной графики.

Выбор разрешения определяет взаимосвязь между оригиналом и цифровым изображением, а именно, нужно таким образом определить разрешение, чтобы цифровое изображение соответствовало исходному оригиналу.

Впрочем, не всегда можно на самом деле получить качественное изображение на оттиске, даже имея качественное битовое изображение. Надо понимать, что проблем между входом и выходом изображения очень много.

С точки зрения метрологии качество понимается как соответствие результата заранее заданному уровню. Так что, если в оригинале имеется минимальная линия определенной толщины, то метрологически качественным будет такое цифровое изображение, которое достоверно отображает эту линию.

Разумеется, если известно значение толщины минимального элемента оригинала, можно рассчитать соответствующее разрешение (создать соответствующую сетку дискретизации) и, тем самым, определить требуемый размер пиксела. Также логично предположить, что если мы так рассчитаем разрешение, что размер стороны пиксела будет равен толщине линии, удастся однозначно оцифровать такой чертеж. Таким образом, если высота пиксела оказывается равной (или очень близкой, т. е. в пределах погрешности) минимальному элементу изображения, то мы можем передать такую линию вполне достоверно, рисунок 21а. Но так ли это?

Рисунок 21

Дело в том, что если посмотреть внимательнее, данный случай напоминает идеальную ситуацию, какая имела место при оцифровке квадрата.

На самом деле сетка дискретизации (пиксельная сетка) вряд ли так четко совпадет с линиями оригинала. А в таком случае возможны два основных варианта (по-прежнему при равенстве высоты пиксела и толщины линии). Сетка дискретизации может быть слегка сдвинута по отношению к исходной линии вверх или вниз, рисунок 21б. По правилам квантования (округления), о которых будет сказано позже, получается следующий результат, рисунок 22а - линия, создаваемая пикселами в битовой карте, "съезжает", соответственно, вверх или вниз на целый пиксел.

Сетка дискретизации проходит строго по середине исходной линии, рисунок 21в. Если мы предположили, что линия сетки дискретизации проходит по краям линии, то и такой вариант возможен. По тем же правилам получается следующий результат, рисунок 22б - линия, создаваемая пикселами в битовой карте, увеличивается по толщине вдвое.

Рисунок 22

Приведенные выше результаты убеждают в том, что идеальный вариант (равенство размера сетки дискретизации толщине линии) далеко не идеален, как это может показаться на первый взгляд. В обоих случаях наблюдаются достаточно серьезные погрешности, которые препятствуют обеспечению достоверного качества исходного изображения.

Следовательно, необходимо внести коррективы в выбор разрешения, и единственный путь - увеличить разрешение. Но тут возникает естественный вопрос - насколько требуется увеличить разрешение?

Необходимо определить соотношение между размером минимального элемента оригинала и размером пиксела - обеспечивать требуемое качество изображения и не увеличивать чрезмерно объем документа.

Исследованиями было установлено, что частота дискретизации должна быть, по крайней мере, вдвое выше максимальной частоты передаваемого сигнала.

Под частотой дискретизации понимается величина, обратная разрешению, т. е. фактически - это высота пиксела. Следовательно, частота дискретизации должна быть, по крайней мере, вдвое выше максимальной частоты передаваемого сигнала, подвергаемого дискретизации.

Такая зависимость известна в западных странах как критерий Найквиста, а в России - как теорема Котельникова.

Предположим, что толщина минимальной линии, например на чертеже, составляет 2,54 мм (0,1 дюйма). Исходя из критерия Котельникова - Найквиста, высота элемента дискретизации (пиксела) должна быть в два раза меньше, следовательно,

2,54 (мм) : 2 = 1,27 (мм).

Таким образом, мы получили размер одной ячейки дискретизации (пиксела), а для того чтобы получить значение разрешения, необходимо определить, сколько таких ячеек попадает в дюйм (равный 25,4 мм) в соответствии с определением понятия разрешения, отсюда

25,4 (мм) : 1,27 (мм) = 20 (пикселов).

Поскольку в каждом дюйме размещается 20 пикселов, можно утверждать, что для достоверной оцифровки штриха толщиной 2,54 мм достаточно разрешения, равного всего 20 ppi.

Суммируя примеры, можно вывести общую формулу, позволяющую "прикинуть" требуемое разрешение, если мы обозначим толщину минимального штриха буквой L (толщина штриха измеряется в миллиметрах), а разрешение - буквой R. Итак,

R = 25,4 (мм) : (L: 2)

Если толщина штриха измеряется в дюймах, формула будет еще проще:

R = 1: (L: 2) = 2: L

Задача расчета достоверной передачи минимальных элементов штрихового изображения важна еще и по другой причине.

Муар – различимая глазом растровая структура изображения.

Механизм возникновения муара состоит во взаимодействии двух сеток, разрешение которых близко друг другу. Периодическая структура изображения (минимальные периодические линии оригинала) лежит в граничной зоне (близка разрешению) дискретизации.

Муар - это одна из многих проблем, неизбежно сопровождающих процесс растеризации. Впрочем, муар - коварное явление и возникает в самых неожиданных случаях, например в результате операции изменения разрешения в сторону уменьшения. Это связано с тем, что растровые образцы именно таким образом реагируют на выбрасывание элементов изображения.

Вспомним, что после того как синусоида сигнала была разделена на дискретные элементы, выполнялась необходимая операция усреднения сигнала в пределах каждого участка. Естественно, что и в каждой ячейке сетки дискретизации графического изображения требуется получить усредненные значения, т. е. всего один конкретный уровень квантования в каждой ячейке. С таким значением уже можно сопоставить конкретное целое число - цифровой код. Осталось только договориться о критерии, который бы разделял ячейки со смешанным цветом на белые и черные.

Для этой цели, как и ранее в дискретизации, необходимо ввести некий жесткий критерий, в соответствии с которым можно усреднять значения и, следовательно, однозначно разделять на уровни квантования. Если у дискретного элемента (пиксела) черный цвет занимает половину площади или больше, принято считать, что и вся ячейка относится к черному цвету. Если у дискретного элемента (пиксела) черный цвет занимает меньше половины площади, то такая ячейка относится целиком к белому цвету. Это и есть требуемый критерий квантования для черно-белого шрифтового изображения.

представление о базовых понятиях компьютерной графики.

Компьютерная графика - это область информатики, занимающаяся созданием, хранением и обработкой различных изображений (рисунков, чертежей, мультипликации) на компьютере.

Компьютерная графика классифицируется по типу представления графической информации, и следующими из него алгоритмами обработки изображений. Обычно компьютерную графику разделяют на векторную и растровую .

Под растровым понимают способ представления изображения в виде совокупности отдельных точек (пикселей) различных цветов или оттенков.

При увеличении растрового рисунка в несколько раз становится видно, что изображение состоит из конечного числа "квадратиков" определенного цвета. Эти квадратики и называют пикселями .

В векторной графике все изображения описываются в виде математических объектов – контуров, т.е. изображение разбивается на ряд графических примитивов – точки, прямой , ломанной, дуги, многоугольника.

Оба этих способа кодирования графической информации имеют свои особенности и недостатки.

Растровая графика позволяет создать (воспроизвести) практически любой рисунок, с использованием более чем 16 млн. оттенков цветов, вне зависимости от сложности.

Растровое представление изображения естественно для большинства устройств ввода-вывода графической информации, таких как мониторы, матричные и струйные принтеры, цифровые фотоаппараты, сканеры.

Основной проблемой растровой графики является большой объем файлов, содержащих изображения: чем больше количество пикселей и чем меньше их размеры, тем лучше выглядит изображение.

Второй недостаток растровых изображений связан с невозможностью их увеличения для рассмотрения деталей. Поскольку изображение состоит из точек, то увеличение изображения приводит только к тому, что эти точки становятся крупнее и напоминают мозаику. Никаких дополнительных деталей при увеличении растрового изображения рассмотреть не удается. Более того, увеличение точек растра визуально искажает иллюстрацию и делает её грубой. Этот эффект называется пикселизацией (от пиксель – самый маленький элемент изображения, точка (как атом в молекуле)).


Рис. 1.1.

У векторных изображений , напротив, размер файла не зависит от реальной величины объекта, что позволяет, используя минимальное количество информации , описать сколько угодно большой объект файлом минимального размера.

Описание объектов может быть легко изменено. Также это означает, что различные операции с рисунком, такие как перемещение, масштабирование, вращение, заполнение и т. д. не ухудшают его качества.


Рис. 1.2.

К недостаткам векторной графики относят следующие:

  1. Возможность изображения в векторном виде доступна далеко не для каждого объекта: для этого может потребоваться разбить объект на очень большое количество векторных линий, что сильно увеличивает количество памяти, занимаемой изображением, и время его прорисовки на экране.
  2. Векторный формат не дает возможность отобразить плавные переходы цветов, сохранить фотографическую точность изображения.

Выбор растрового или векторного формата зависит от целей и задач работы с изображением. Каждый из видов компьютерной графики был разработан для решения определенных задач и имеет свою заданную область применения.

Если нужна фотографическая точность цветопередачи, то предпочтительнее растр. Логотипы, схемы, элементы оформления удобнее представлять в векторном формате.

Пиксели, разрешение, размер изображения

Размеры растровых изображений выражают в виде количества пикселов по горизонтали и вертикали, например, 600?800. В данном случае это означает, что ширина изображения составляет 600, а высота - 800 точек. Количество точек по горизонтали и вертикали может быть разным для разных изображений.

При выводе изображения на поверхность экрана или бумаги, оно занимает прямоугольник определённого размера. Для оптимального размещения изображения на экране необходимо согласовывать количество точек в изображении, пропорции сторон изображения с соответствующими параметрами устройства отображения.

Степень детализации изображения, число пикселей (точек) отводимых на единицу площади называют разрешением .

Если пикселы изображения выводятся пикселами устройства вывода один к одному, размер будет определяться только разрешением устройства вывода. Соответственно, чем выше разрешение экрана, тем больше точек отображается на той же площади и тем менее зернистой и более качественной будет ваша картинка.

При большом количестве точек, размещённом на маленькой площади, глаз не замечает мозаичности рисунка. Справедливо и обратное: малое разрешение позволит глазу заметить растр изображения ("ступеньки").

Высокое разрешение изображения при малом размере плоскости отображающего устройства не позволит вывести на него всё изображение, либо при выводе изображение будет "подгоняться", например, для каждого отображаемого пиксела будут усредняться цвета попадающей в него части исходного изображения. При необходимости крупно отобразить изображение небольшого размера на устройстве с высоким разрешением приходится вычислять цвета промежуточных пикселей.

Следует четко различать: разрешение экрана; разрешение печатающего устройства; разрешение изображения .

Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны, пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске.

Разрешение экрана (экранного изображения) - это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселях и определяет размер изображения, которое может поместиться на экране целиком. Для измерения экранного разрешения используют обозначение ppi (pixel per inch).

Разрешение принтера (печатного изображения) - это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины (растра). Оно измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере. В зависимости от сорта бумаги выбирают следующие величины частоты растра: для газетной бумаги - 70-90 dpi, для бумаги среднего качества - 90-100 dpi, для глянцевой - 133 dpi и выше.

Разрешение изображения (оригинала) - это свойство самого изображения. Разрешение оригинала используется при вводе изображения в компьютер и измеряется в точках на дюйм (dots per inch – dpi), задается при создании изображения в графическом редакторе или с помощью сканера. Установка разрешения оригинала зависит от требований, предъявляемых к качеству изображения и размеру файла. В общем случае действует правило: чем выше требования к качеству, тем выше должно быть разрешение оригинала.

Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения - его физическим размером.

Физический размер изображения может измеряться как в пикселях, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом.

Если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселях, чтобы знать, какую часть экрана оно занимает. Если изображение готовят для печати, то его размер задают в единицах длины, чтобы знать, какую часть листа бумаги оно займет.

Вверх