Вирусы, строение и размножение вирусов. Определение вируса Типы вирусов биология

Размеры – от 15 до 2000 нм (некоторые вирусы растений). Наибольшим среди вирусов животных и человека является возбудитель естественной оспы – до 450 нм.

Простые вирусы имеют оболочку – капсид , которая состоит лишь из белковых субъединиц (капсомеров ). Капсомеры большинства вирусов имеют спиральную или кубическую симметрию. Вирионы со спиральной симметрией имеют палочкообразную форму. По спиральному типу симметрии построено большинство вирусов, поражающих растения. Большая часть вирусов, поражающих клетки человека и животных, имеют кубический тип симметрии.

Сложные вирусы

Сложные вирусы могут быть дополнительно покрыты липопротеидной поверхностной мембраной с гликопротеидами, которые являются частью плазматической мембраны клетки хозяина (например, вирусы оспы, гепатита В), то есть имеют суперкапсид . С помощью гликопротеидов происходит распознавание специфических рецепторов на поверхности оболочки клетки хозяина и прикрепление вирусной частицы к ней. Углеводные участки гликопротеидов выступают над поверхностью вируса в виде заостренных палочек. Дополнительная оболочка может сливаться с плазматической мембраной клетки хозяина и способствовать проникновению содержимого вирусной частицы вглубь клетки. Дополнительные оболочки могут включать ферменты, обеспечивающие синтез вирусных нуклеиновых кислот в клетке хозяина и некоторые другие реакции.

Бактериофаги имеют довольно сложное строение. Их относят к сложным вирусам. Например, бактериофаг Т4 состоит из расширенной части – головки, отростка и хвостовых нитей. Головка состоит из капсида, в котором содержится нуклеиновая кислота. Отросток включает воротничок, полый стержень, окруженный сокращающимся чехлом и напоминающий растянутую пружину, и базальную пластинку с хвостовыми шипами и нитями.

Классификация вирусов

Классификация вирусов основана на симметрии вирусов, наличии или отсутствии внешней оболочки.

Дезоксивирусы Рибовирусы
ДНК

двухцепочечная

ДНК

одноцепочечная

РНК

двухцепочечная

РНК

одноцепочечная

Кубический тип симметрии:

– без внешних оболочек (аденовирусы);

– с внешними оболочками (герпес)

Кубический тип симметрии:

– без внешних оболочек (некоторые фаги)

Кубический тип симметрии:

– без внешних оболочек (ретровирусы, вирусы ранковых опухолей растений)

Кубический тип симметрии:

– без внешних оболочек (энтеровирусы, полиовирус)

Спиральный тип симметрии:

– без внешних оболочек (вирус табачной мозаики);

– с внешними оболочками (гриппа, бешенства, онкогенные РНК-содержащие вирусы)

Смешанный тип симметрии (Т-парные бактериофаги)
Без определенного типа симметрии (оспы)

Проявляют жизнедеятельность вирусы только в клетках живых организмов. Их нуклеиновая кислота способна вызвать синтез вирусных частиц клетки хозяина. Вне клетки вирусы не проявляют признаков жизни и называются вирионами .

Жизненный цикл вируса состоит из двух фаз: внеклеточной (вирион), в которой он не проявляет признаков жизнедеятельности, и внутриклеточной . Вирусные частицы вне организма хозяина некоторое время не теряют способности к заражению. Например, вирус полиомиелита может сохранять инфекционную активность на протяжении нескольких суток, оспы – месяцев. Вирус гепатита В сохраняет ее даже при кратковременном кипячении.

Активные процессы одних вирусов протекают в ядре, других – в цитоплазме, у некоторых – и в ядре, и в цитоплазме.

Типы взаимодействия клеток и вирусов

Взаимодействие клеток и вирусов бывает нескольких типов:

  1. Продуктивного – нуклеиновая кислота вируса индуцирует в клетке хозяина синтез собственных веществ с образованием нового поколения.
  2. Абортивного – репродукция прерывается на какой-нибудь стадии, и новое поколение не образуется.
  3. Вирогенного – нуклеиновая кислота вируса встраивается в геном клетки хозяина и не способна к репродукции.

В многовековой истории нашей планеты в развитие всей флоры и фауны постоянно вмешивались невидимые захватчики – вирусы (лат. virus – яд).
В связи с микроскопическим размером вирусы лишены такого сложного внутреннего многоклеточного строения как у живых организмах, так как они в разы меньше любой живой клетки и даже намного меньше какой-либо бактерии. Влиянию вирусов подвержены все известные живые организмы, не только люди, животные, рептилии и рыбы, но и всевозможные растения.
Только в начале 20-ого века, после изобретения электронного микроскопа, ученые смогли увидеть своими глазами крошечных возбудителей болезней, о которых до того момента уже было высказано великое множество теорий. Определенные вирусы человека отличались между собой по форме и размеру. В зависимости от типа болезни симптомы разных заболеваний проявляются по-разному: воспаляется кожа, внутренние органы или суставы.

Вирусная инфекция

В 1852 году Дмитрию Иосифовичу Ивановскому (русский ботаник) удалось получить инфекционный экстракт из растений табака, который был заражен мозаичной болезнью. Такая структура получила название вируса табачной мозаики.

Строение вируса


В самом центре вирусной частицы располагается геном (наследственная информация, которая представлена ДНК или РНК структурой – позиция 1). Вокруг генома располагается капсид (позиция 2), который представлен белковой оболочкой. На поверхности белковой оболочки капсида располагается липопротеидная оболочка (позиция 3). Внутри оболочки располагаются капсомеры (позиция 4). Каждый капсомер состоит из одной или двух белковых нитей. Число капсомеров для каждого вируса строго постоянно. Каждый вирус содержит определенное число капсомеров, поэтому их количество у разных видов вируса
существенно отличается. Некоторые вирусы не имеют в своем строении белковой оболочки (капсида). Такие вирусы называют простыми. И наоборот, вирусы, которые в своем строении имеют еще одну наружную (дополнительную липопротеидную) оболочку называются сложными. У вирусов различают две жизненные формы. Внеклеточная жизненная форма вируса называется варион (состояние покоя, ожидания). Внутриклеточная форма жизни вируса, которая активно репродуцирует, называется вегетативная.

Свойства вирусов

Вирусы не имеют клеточного строения, их относят к мельчайшим живым организмам, воспроизводятся внутри клеток, имеют простое строение, большинство из них вызывают различные болезни, каждый тип вируса распознает и инфицирует лишь определенные типы клеток, содержат только один тип нуклеиновой кислоты (ДНК или РНК).

Классификация вирусов

Как клетки организма усваивают вещества

В отличие от других живых организмов вирусу для воспроизводства потомства нужны живые клетки. Сам по себе он не умеет размножаться. К примеру, клетки организма человека состоят из ядра (в нем сосредоточена ДНК — генетическая карта, план действий клетки для поддержания ее жизнедеятельности). Ядро клетки окружает цитоплазма, в которой расположены митохондрии (они вырабатывают энергию для химических реакций, лизосомы (в них расщепляются поступившие из вне материалы), полисомы и рибосомы (в них вырабатываются белки и ферменты для осуществления химических реакций, которые происходят в клетке). Вся цитоплазма клетки, вернее ее пространство пронизано сетью канальцев, по которым всасываются нужные вещества, а также выводятся ненужные. Также клетка окружена мембраной, которая защищает ее и выполняет роль двустороннего фильтра. Мембрана клетки постоянно вибрирует. При наличии на поверхности мембраны корпускулу белка она изгибается и заключает его в пищеварительный пузырек, который втягивает в клетку. Далее мозговой центр клетки (ядро) распознает поступившее извне вещество и дает серию команд центрам, которые расположены в цитоплазме. Они разлагают поступившее вещество на более простые соединения. Часть полезных соединений используют для поддержания жизнедеятельности и выполнения запрограммированных функций, а ненужные соединения выводят наружу из клетки. Так осуществляется процесс поглощения, переваривания, усвоения веществ в клетке и вывода ненужных наружу.

Размножение вирусов


Как отмечалось выше, вирусу для воспроизводства себе подобных нужны живые клетки, потому что сам по себе он не умеет размножаться. Процесс проникновения вируса в клетку состоит из нескольких этапов.

Первый этап проникновения вируса в клетку заключается в осаждении (адсорбции посредством электрического взаимодействия) его на поверхности клетки – мишени. Клетка – мишень должна в свою очередь обладать соответствующими поверхностными рецепторами. Без наличия соответствующих поверхностных рецепторов вирус не может присоединиться к клетке. Поэтому, такой вирус, который присоединился к клетке в результате электрического взаимодействия можно убрать путем встряхивания. Второй этап проникновения вируса в клетку называют необратимым. При наличии соответствующих рецепторов вирус прикрепляется к клетке и белковые шипы или нити начинают взаимодействовать с рецепторами клетки. В качестве рецепторов клетки выступает белок или гликопротеид, который обычно специфичен для каждого вируса.

Во время третьего этапа вирус всасывается (перемещается) в клеточной мембране с помощью внутриклеточных мембранных пузырьков.

В четвертом этапе ферменты клетки расщепляют вирусные белки, и таким образом освобождается из «заточения» геном вируса, в котором располагается наследственная информация, которая представлена ДНК или РНК структурой. Затем спираль РНК быстро разворачивается и устремляется в ядро клетки. В ядре клетки геном вируса изменяет генетическую информацию клетки и реализует свою. В результате таких изменений работа клетки полностью дезорганизуется и вместо нужных ей белков и ферментов клетка начинает синтезировать вирусные (видоизменённые) белки и ферменты.


Время прошедшее с момента проникновения вируса в клетку до выхода новых варионов называется скрытым, или латентным периодом. Оно может изменяться от нескольких часов (оспа, грипп) до нескольких суток (корь, аденовирус).


Открытие вирусов Д.И.Ивановским в 1892г. положило начало развитию науки вирусологии. Более быстрому ее развитию способствовали: изобретение электронного микроскопа, разработка метода культивирования микроорганизмов в культурах клеток.

В настоящее время вирусология- бурно развивающаяся наука, что связано с рядом причин:

Ведущей ролью вирусов в инфекционной патологии человека (примеры- вирус гриппа, ВИЧ- вирус иммунодефицита человека, цитомегаловирус и другие герпесвирусы) на фоне практически полного отсутствия средств специфической химиотерапии;

Использованием вирусов для решения многих фундаментальных вопросов биологии и генетики.

Основные свойства вирусов (и плазмид), по которым они отличаются от остального живого мира.

1. Ультрамикроскопические размеры (измеряются в нанометрах). Крупные вирусы (вирус оспы) могут достигать размеров 300 нм, мелкие- от 20 до 40 нм. 1 мм=1000 мкм, 1 мкм=1000 нм.

3. Вирусы не способны к росту и бинарному делению.

4. Вирусы размножаются путем воспроизводства себя в инфицированной клетке хозяина за счет собственной геномной нуклеиновой кислоты.

6. Средой обитания вирусов являются живые клетки- бактерии (это вирусы бактерий или бактериофаги), клетки растений, животных и человека.

Все вирусы существуют в двух качественно разных формах: внеклеточной- вирион и внутриклеточной- вирус. Таксономия этих представителей микромира основана на характеристике вирионов- конечной фазы развития вирусов.

Строение (морфология) вирусов.

1. Геном вирусов образуют нуклеиновые кислоты, представленные одноцепочечными молекулами РНК (у большинства РНК- вирусов) или двухцепочечными молекулами ДНК (у большинства ДНК- вирусов).

2. Капсид - белковая оболочка, в которую упакована геномная нуклеиновая кислота. Капсид состоит из идентичных белковых субъединиц- капсомеров. Существуют два способа упаковки капсомеров в капсид- спиральный (спиральные вирусы) и кубический (сферические вирусы).

При спиральной симметрии белковые субъединицы располагаются по спирали, а между ними, также по спирали, уложена геномная нуклеиновая кислота (нитевидные вирусы). При кубическом типе симметрии вирионы могут быть в виде многогранников, чаще всего- двадцатигранники - икосаэдры.

3. Просто устроенные вирусы имеют только нуклеокапсид , т.е. комплекс генома с капсидом и называются “голыми”.

4. У других вирусов поверх капсида есть дополнительная мембраноподобная оболочка, приобретаемая вирусом в момент выхода из клетки хозяина- суперкапсид. Такие вирусы называют “одетыми”.

Кроме вирусов, имеются еще более просто устроенные формы способных передаваться агентов - плазмиды, вироиды и прионы.

Основные этапы взаимодействия вируса с клеткой хозяина.

1. Адсорбция- пусковой механизм, связанный со взаимодействием специфических рецепторов вируса и хозяина (у вируса гриппа- гемагглютинин, у вируса иммунодефицита человека- гликопротеин gp 120).

2. Проникновение- путем слияния суперкапсида с мембраной клетки или путем эндоцитоза (пиноцитоза).

3. Освобождение нуклеиновых кислот- “раздевание” нуклеокапсида и активация нуклеиновой кислоты.

4. Синтез нуклеиновых кислот и вирусных белков, т.е. подчинение систем клетки хозяина и их работа на воспроизводство вируса.

5. Сборка вирионов- ассоциация реплицированных копий вирусной нуклеиновой кислоты с капсидным белком.

6. Выход вирусных частиц из клетки, приобретения суперкапсида оболочечными вирусами.

Исходы взаимодействия вирусов с клеткой хозяина.

1. Абортивный процесс - когда клетки освобождаются от вируса:

При инфицировании дефектным вирусом, для репликации которого нужен вирус- помощник, самостоятельная репликация этих вирусов невозможна (так называемые вирусоиды). Например, вирус дельта (D) гепатита может реплицироваться только при наличии вируса гепатита B, его Hbs - антигена, аденоассоциированный вирус- в присутствии аденовируса);

При инфицировании вирусом генетически нечувствительных к нему клеток;

При заражении чувствительных клеток вирусом в неразрешающих условиях.

2. Продуктивный процесс - репликация (продукция) вирусов:

- гибель (лизис) клеток (цитопатический эффект)- результат интенсивного размножения и формирования большого количества вирусных частиц - характерный результат продуктивного процесса, вызванного вирусами с высокой цитопатогенностью. Цитопатический эффект действия на клеточные культуры для многих вирусов носит достаточно узнаваемый специфический характер;

- стабильное взаимодействие , не приводящее к гибели клетки (персистирующие и латентные инфекции) - так называемая вирусная трансформация клетки.

3. Интегративный процесс - интеграция вирусного генома с геномом клетки хозяина. Это особый вариант продуктивного процесса по типу стабильного взаимодействия. Вирус реплицируется вместе с геномом клетки хозяина и может длительно находиться в латентном состоянии. Встраиваться в ДНК- геном хозяина могут только ДНК- вирусы (принцип “ДНК- в ДНК”). Единственные РНК- вирусы, способные интегрироваться в геном клетки хозяина- ретровирусы, имеют для этого специальный механизм. Особенность их репродукции- синтез ДНК провируса на основе геномной РНК с помощью фермента обратной транскриптазы с последующим встраиванием ДНК в геном хозяина.

Основные методы культивирования вирусов.

1. В организме лабораторных животных.

2. В куриных эмбрионах.

3. В клеточных культурах - основной метод.

Типы клеточных культур.

1. Первичные (трипсинизированные) культуры - фибробласты эмбриона курицы (ФЭК), человека (ФЭЧ), клетки почки различных животных и т.д. Первичные культуры получают из клеток различных тканей чаще путем их размельчения и трипсинизации, используют однократно, т.е. постоянно необходимо иметь соответствующие органы или ткани.

2. Линии диплоидных клеток пригодны к повторному диспергированию и росту, как правило не более 20 пассажей (теряют исходные свойства).

3. Перевиваемые линии (гетероплоидные культуры), способны к многократному диспергированию и перевиванию, т.е. к многократным пассажам, наиболее удобны в вирусологической работе- например, линии опухолевых клеток Hela, Hep и др.

Специальные питательные среды для культур клеток.

Используются разнообразные синтетические вирусологические питательные среды сложного состава, включающие большой набор различных факторов роста- среда 199, Игла, раствор Хэнкса, гидролизат лактальбумина. В среды добавляют стабилизаторы рН (Hepes), различные в видовом отношении сыворотки крови (наиболее эффективной считают эмбриональную телячью сыворотку), L-цистеин и L-глютамин.

В зависимости от функционального использования среды могут быть ростовые (с большим содержанием сыворотки крови) - их используют для выращивания клеточных культур до внесения вирусных проб, и поддерживающие (с меньшим содержанием сыворотки или ее отсутствием)- для содержания инфицированных вирусом клеточных культур.

Выявляемые проявления вирусной инфекции клеточных культур.

1. Цитопатический эффект.

2. Выявление телец включений.

3. Выявление вирусов методом флюоресцирующих антител (МФА), электронной микроскопией, авторадиографией.

4. Цветная проба. Обычный цвет используемых культуральных сред, содержащих в качестве индикатора рН феноловый красный, при оптимальных для клеток условиях культивирования (рН около 7,2)- красный. Размножение клеток меняет рН и соответственно- цвет среды с красного на желтый за счет смещения рН в кислую сторону. При размножении в клеточных культурах вирусов происходит лизис клеток, изменения рН и цвета среды не происходит.

5. Выявление гемагглютинина вирусов- гемадсорбция, гемагглютинация.

6. Метод бляшек (бляшкообразования). В результате цитолитического действия многих вирусов на клеточные культуры образуются зоны массовой гибели клеток. Выявляют бляшки- вирусные “ клеточно- негативные” колонии.

Номенклатура вирусов.

Название семейства вирусов заканчивается на “viridae”, рода- “virus”, для вида обычно используют специальные названия, например - вирус краснухи, вирус иммунодефицита человека- ВИЧ, вирус парагриппа человека типа 1 и т.д.

Вирусы бактерий (бактериофаги).

Естественной средой обитания фагов является бактериальная клетка, поэтому фаги распространены повсеместно (например, в сточных водах). Фагам присущи биологические особенности, свойственные и другим вирусам.

Наиболее морфологически распространенный тип фагов характеризуется наличием головки- икосаэдра, отростка (хвоста) со спиральной симметрией (часто имеет полый стержень и сократительный чехол), шипов и отростков (нитей), т.е. внешне несколько напоминают сперматозоид.

Взаимодействие фагов с клеткой (бактерией) строго специфично, т.е. бактериофаги способны инфицировать только определенные виды и фаготипы бактерий.

Основные этапы взаимодействия фагов и бактерий.

1. Адсорбция (взаимодействие специфических рецепторов).

2. Внедрение вирусной ДНК (инъекция фага) осуществляется за счет лизирования веществами типа лизоцима участка клеточной стенки, сокращения чехла, вталкивания стержня хвоста через цитоплазматическую мембрану в клетку, впрыскивание ДНК в цитоплазму.

3. Репродукция фага.

4. Выход дочерних популяций.

Основные свойства фагов.

Различают вирулентные фаги , способные вызвать продуктивную форму процесса, и умеренные фаги , вызывающие редуктивную фаговую инфекцию (редукцию фага). В последнем случае геном фага в клетке не не реплицируется, а внедряется (интегрируется) в хромосому клетки хозяина (ДНК в ДНК), фаг превращается в профаг. Этот процесс получил название лизогении . Если в результате внедрения фага в хромосому бактериальной клетки она приобретает новые наследуемые признаки, такую форму изменчивости бактерий называют лизогенной (фаговой) конверсией. Бактериальную клетку, несущую в своем геноме профаг, называют лизогенной, поскольку профаг при нарушении синтеза особого белка- репрессора может перейти в литический цикл развития, вызвать продуктивную инфекцию с лизисом бактерии.

Умеренные фаги имеют важное значение в обмене генетическим материалом между бактериями- в трансдукции (одна из форм генетического обмена). Например, способностью вырабатывать экзотоксин обладают только возбудитель дифтерии, в хромосому которого интегрирован умеренный профаг, несущий оперон tox, отвечающий за синтез дифтерийного экзотоксина. Умеренный фаг tox вызывает лизогенную конверсию нетоксигенной дифтерийной палочки в токсигенную.

По спектру действия на бактерии фаги разделяют на:

Поливалентные (лизируют близкородственные бактерии, например сальмонеллы);

Моновалентные (лизируют бактерии одного вида);

Типоспецифические (лизируют только определенные фаговары возбудителя).

На плотных средах фаги обнаруживают чаще с помощью спот (spot) - теста (образование негативного пятна при росте колоний) или методом агаровых слоев (титрования по Грациа).

Практическое использование бактериофагов.

1. Для идентификации (определение фаготипа).

2. Для фагопрофилактики (купирование вспышек).

3. Для фаготерапии (лечение дисбактериозов).

4. Для оценки санитарного состояния окружающей среды и эпидемиологического анализа.



Простейшие вирусы представляют собой нуклеопротеид, который состоит из нуклеиновой кислоты (РНК или ДНК ) и капсида - белковой оболочки. Более сложные вирусы имеют дополнительную липидную оболочку. Существует тип вирусов - бактериофаги , которые имеют специальное строение, позволяющее им внедрять свой геном в клетки бактерий. Бактериофаги имеют тело, состоящее из головки с геномом, хвостик (трубка, которая транспортирует геном в клетку) и отростки.

Вирусы могут попадать в клетку путем растворения оболочки клетки или с помощью погружения фрагментов оболочки вместе с вирусом в цитоплазму или вместе с пиноцитозными пузырьками.

Попадая в клетку, вирус начинает размножаться с помощью клетки, которая синтезирует ДНК или РНК вируса. Клетка повреждается, а после гибнет, а вирусы получают возможность поразить другие клетки. Таким образом, вирус может существовать и размножаться практически бесконечно. Существует огромное количество различных вирусов, которые вызывают опасные болезни: грипп, гепатит, СПИД и другие.

Самым опасным и неизученным до конца является вирус иммунодефицита человека (ВИЧ) , который вызывает синдром приобретенного иммунодефицита человека (СПИД ), который попадает в организм при половом контакте или через кровь. Этот вирус поражает клетки иммунитета человека, делая его уязвимым перед любой болезнью, из-за чего человек может умереть даже от насморка.

Вирусы, поражающие организм человека и животных, имеют способность мутировать очень быстро размножаться. Этот факт делает вирусные болезни предельно устойчивыми для лечения.

Вирусы. Наверняка Вы неоднократно слышали это название, слышали о том вреде, который они представляют для человека, слышали о таких вирусных инфекциях как грипп, корь, оспа, герпес, гепатит, ВИЧ... Но что такое вирусы и почему они так опасны?

Все вирусы являются неклеточными организмами, то есть не имеющими клеточной структуры и в этом заключается их главное отличие от прочих типов организмов.

Средние размеры вирусов колеблются в пределах от 20 до 300 нанометров, что делает их малейшими из, всего к чему применимо слово «живое». Среднестатистический вирус примерно в 100 раз меньше, чем другие патогенные существа, бактерии . Увидеть вирус можно только в достаточно мощном электронном микроскопе.

Попав в клетки хозяина вирусы начинают самопроизвольно размножаться, причем строительным материалом выступает вещество самой клетки, что нередко приводит к ее гибели. Именно этим опасны все вирусные инфекции.

Интересно, что для человека существуют и полезные вирусы, это так называемые бактериофаги, которые разрушают вредные бактерии внутри нас.

Как устроены вирусы?

Строение вирусных частиц максимально просто, в большинстве случаев они состоят всего из двух компонентов, реже - трех:

генетический материал в виде ДНК или РНК молекул - это собственно основа вируса, содержащая в себе информацию для его размножения;

капсид - белковая оболочка, отделяющая и защищающая генетический материал от внешней среды;

суперкапсид - дополнительная липидная оболочка, которая в некоторых случаях формируется из мембран клеток донора.

Внутреннее устройство вирусной частицы

Какими бывают вирусы?

По форме все вирусы можно разделить на 4 большие группы:

  1. спиральные
  2. икосаэдрические и круглые
  3. продолговатые
  4. комплексные или неправильные

Типовые формы вирусов

Распространяются вирусы также различными путями, коих существует огромное количество: по воздуху, при непосредственном контакте, по средством животных-переносчиков, через кровь и т.д.

Вверх